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ABSTRACT: An investigation of the basic relationships which describe
the flov »f non-Newtonian fluids under conditions of impact loeding,
possible plastic flov, and short periods for the various conditions,

A generalization of the Navier-Stokes equation is proposed
for non-Newtonian fluids in vhich the stress is proportional to a powver
n of the rate of strain. Results shov that the patio of the transverse
to the longitudinul strain i3 not a constant but a function of time or
of strain and depends rtrongly upon the visco-elastic response of the
med{um as vell as on the loading conditions., The pronounced effect of
volume-viscrsity on ti~ shape of this function {s {llustreted.
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3EHAVICR CF NON<NEWTONIAN FLUIDS
UMDER CCNDITICNS OF HIGH PRESSURE
RAPID ACCELERATICN AND HIGH VEL(CITY

7. A, NCYARD, JR,
HIAD UARTERS
CRDENT S "I3APCYS SCMND
RCZK ISLAM, TLLI'CIS

Pseudo Plastic and Dilatant. fluids

{he sImple shear I'low of pseudo-plastic and dilatant fluids
is exrressed with considerable exactness by ‘Wsele-0stwald's formula .
as follews: m

33—’ ”psu : (1)
where Mpsy s the quantity similar to the viscosity of Vewtonlan
fluid, = iu the shearing stress, du/dy is.the velocity sradienmt, :
n is the rheclogicsl constant, The flow of pseudo-plastic tluida is .
- expressed by n > 1, and that of dilatant fluids 1s given by n<l ;'
tin the above ejuation, reepectivaly. ;zga~_. . o

The relation between" the stress cowponents and rate-of- S

Strain com"onen»s ‘or non-ﬂewtonian fluids can te expressed ast -

| - | Py "Nk PO o . v .(2)-"- ;
~lhere p is a component of t.re st.ress bensor (rik), as indicated

in the %cllowinr' array: :

U : pxy pxz R
(Pik) - ) ‘.'.p:ry p~yz ((3)
pzy Paz

and ¢;, 1s o component of the rate-of -strain tensor'f'ik) which. is

oxrregsed ass -e l‘e
. xx %exz
%) [ 3 '
(og) ieyx ®yy %eyz (4)
L
Cox éezy 22
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[hese tensors are symmetric tensors, that is:

Pa * Pig » ®1ic * %t (1 4%
Pik is a normal stress if i = k,”a tangential or a shear stress if
1 / k, p is the pressure, which is the mean of the normal stresses
over three planes mutually at right angles. 6ik is the Kronecker
delta (Gik- 1 if i=k, 6, = O if i=k; i,k= x,y, z). U, v, ¥ are
parallel velocity components to the coordinate axes of rectangular

Curtesian coordinates x,y, z, respectively. e, e ,etc, sre
Au - MV x? yy
8xx” Tx~ " r etc. (4 denotes partisl
derivative)

M 1s an arbitrary scalar function of the three invariants of the
rate-of-strain, and may be expressed as

"ot v ¥ C22 (%)
3 2 2 2 (s
e= °yyezz * €20x * Cxxlyy '.‘(eyz ‘e, °xy) 4)

leikl ® Cxx®yy®az + 3 ®v2%2xtay ~

; 2 2 2
( exxeyz * yypzx * ezzexy ) (7)

If we treat the fluid as be:l.ng incompressitle, the first invariant
O vanishes, or . AP e =0 ()
- xx " Cyy t % :

o Consequently, T, can be expressed as an arbitrary scalar funciion cf
.. the two irvarianis e, | T In rectilinear flow and in two-dimen-
sional flow, the third imanant le;, | is identically zero. lence
can be expressed as a scalar funyfion of the second invariant e
" only in three-dimensional flow. Taking account of eq. (€), the
second invariant e becomes " .
' 2 2, 2 2 2 :
" 4 b o]
e [2(e ._eyy+e )"eyz,*ezx*exy] (9)
- If we peneralize ‘m aele-Ostwald's formula by assuming that the stress

! - compoments are, in ceneral, expressible by the 1/n th vower functions

of the rate-of=-strain components for non-Newtonian fluids, the rela-
tions between the stress components and the rate-of-st.aln components
mey be exrressed as

Pyg = P+ Z/upsu €44 8, (1=x,y, 2)

. (10)
_09 (1,k, = x, Y, 25 1 ¢ k)

= 12e . 62402440, o2 fLunken
[2e g + egy + €45) # ez * ®x * Oxy (11)
If we include the kinetic reactions and the external forces, and

consider the ejquilibrium of an infinitesimal rectangular parallele-
pired with its centroid at a point P(x, y, z,) and its edges parallel
to th. ~7ordinate axes,then by resclvins the resultanl forces along
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the axes, we obtain

Du = op tp
X+ "Fxx + *xy ¢+ *x¥%
P Dt e X Zy_L 3z
op

eg%--eY+HE¢gu_+K;& (12)

Apzx dp Ap
e ot © 0z + z

where X, Y, Z are the components of the extetnal force actin~ con the
fluid per unit mass, @ is the density, and Du/t, Dv/Dt, znd Du/Dt
are the components of the acceleration of a particle of the fluid,
Substituting eq. (10) in eq. (12), then making use cf e~ (°) we hrve
the fundamental equations of motion for non-Newtcnian fluid in the
form

1/n 49 AG
'PX'KE Fpsu [°V“"2°xxr xyT\-'*exzﬁ]
A0 10

A0
?%-QY'-%*ppgn[ovv‘eny 2°yyZ" yz??]'.l':‘.)

W 1/ 80, . B0, 26
QW'OZ'*‘ ppsunIOane LTI T zzl_][

2 2 - 2
where V‘ - A 3
= —-Q + +
BX z;;? K;Z
The equation of continuity is e +e_=0 _(ay)

xx * yy 2z

This is treating the fluid as being incompressible. Parameters
should be theorized for variation in d:nsity for fluid under pressure
and eqs. (12) and (13) should be solved with the aprropriate terms
inserted. This will be investigated in another pape:.

If n » 1, eq. (13) becomes the Navier-Stokes equation for Newtonian
fluid. The rheological constant n has the different values fer
varied fluids and n, in general, seldom has an integral value. The
spproximate solution by the energy method may be aspplied for nen-
Newtonian flow., The dissipation of energy in non<liewionian flow may
be calcul ted by .

] [exxpxx y'yp yy ®22P22 * eyzpyz‘+ ®2xP2xt xypxy

‘ [dxdydz]
Substituting eq. (10 into this equation and then using eq (') we
Is ppsu fjf [2(e +e +ew/+eyz e x+e f' gixSydz (1h)

so that the dissipation function @, which is the rate of dissipation
of energy per unit time per unit volume is obtained as

2 2. 2 2 2 2 2 1
g = ﬂp:;u/n [2(exx +eyy +ezz) + eyz te, ¢t exyfmly n (15)

Now if the velocity distribution of flow gets the minimum dissipation

319




HCWARD

of energy, that is 61 = offfas dxdydz = 0 (16)

It may be proved that the velocity distribvtion also sstisfies the
equation of motion in which inertia terms are neglected and external
forces derived from a potential or zero, that is

2 40 AQ 40
°v”‘“zexxl" TR R TR H
50 20 _ BH .
Ovzv e x yy‘&y S el (17)
A0

va+e AQ L0 _AH
zxﬁ*ezyﬁ}’zezz'ﬁ T

‘There B is a function of x, y, z. From e3. (15) we have -

Jn+l l/n o0 Abu ., AV 86V ,Av AbW Av.  ABW. ABv,
s “n A ps" OIK"A_?tyr iz’ H r'(r“ )

PR B R (e D (“" “")1

’l‘heretore the variation 8lofl becomes .
. l/n f bu Abu Av Abv o bw Sow b Ay
or- B J‘fm TR TR A Ay K’ m U NE c

()
(2 + A°">+( )(“‘;”5“) (Fr géz.gﬁ-"nmm

Considering that. -6u, 6v, &w are zero at the body surface and infinity

and then using the integration by parts,” the different.ial terms of
bu, 6v, and &w with respect. tox become ' :

fffO[ZA“ = %Q_v* ) %6_%_1 ]dxdydz D
ff{'°“ : >5‘~<—* e - [ + St
sw]dx foﬁ%—;au r 2ﬁ-,)as (r)(%‘! 3;‘)594}d),12_

- 'fffﬁ'e"""“r gz * r) . 6"( )] dxdvdz =

Since the differential terms of bu, bv, and &w wtih res_i*eét £0 3{“
" and z are transformed in the same way, eq..1f may be written as

) 1/nJ‘-“‘ 8o, . 88, _
oI = -LrT ”psa [ 6u 0vu * 2exxm' * xy Ay e1‘2 Az) * 5‘,(@92\,

80, . 88, 5, 19

'AO é.g.) — 4
2x AX 2y Ay 22 1%

exy = +2eyy Ay yz ) ¢ 6w(07w + e
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*0(6u—+6wr+6vz-)(h- K' %;-)]dld)'dz
Utilizing eq. (8') and eq. (15) the above equation becomes
[6u(@ éu + 2 xb-gx xy %; ve., K') 6v (O v?v + °yx %?( + 2'yy

%2 yzr)+6"(°v2"+°zxﬁ+°zyﬁ “K-)]dxdydz-osy_)_

Since the variations 6u, 6v, and 6w must be satisfied by eq. (8) so

Lhat  sou . sbv . abw

& 'y ‘"
Multiplying this equation by a(x, y, 2) and then adding its results
to eq. (19) produces the following ewatiom (20)

fff[bu(OVu 2 %g xy% szz 6v(0€v+e -;+

. b9 N Abu Abv A
2°yy Iy °yz 52° 6"(“"V'z""'ezx X o2y r ®23 Z— }hdyd'

equals zero. Since bu, 6v, and bw are zero at the bcdy surface and
infinity, using integration by parts gives

.[.” Kié“d"dydz . fﬁlafml -J udx] dydz = -JII udxdydz

Therefore eq. (20) becones

' 80, 48 2 80 20
IJJ[(O&u zexxﬁ*xydyl'sz—z"H?éu (v *oyx X ZYYAY

. 80, M0 . B0 _fa
"'eyz Az q)bv +(0 V“ ezx = +ezy Iy +?eu T C )6w]dxdydz 0

" as 6u, 5v, and 6w ray take arbitrary values. in the domain of flow,

the coefilc*ents f buy v, and &w must be zero in order to always

- satisfy the. above equarlon. ['hen, u.e same equation as eq, 17 1is
obtained as follows. '

Lo o AV - 4@ la

xx Bx T Sxy by Y %x2 8z T X

0 Ae e _ ba

Py kT

89, 80 o 89 fa

X BX zy Ly 22 8z Bz

0vu+ 2e
Ov“v+ e

Ov2w + e

Thus, the velocity distribution that satisfies ej. (16) is found to

be the solution.of ej. (17), if the inertia terms are neglected and
external forces derived from a potential or zero., Therefore, if the
flow satisfies the conditicns mentioned above, the approximate sclu-
tion of flow may oe obtained by using this minimum dissipation cf
energy method: the velocity distributicn gortaining scme undetermined
coefficients and satisfying the .oundary ccrditicns is apirorriately

assumed, and then the undetermined ccefficients are det 'rmined so
that tho dissijation energy beccmes minimun.
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VISCO=-ELASTICITY
ome of the characteristics of viscc-elastic substances are

desirable in the operation of hydraulic systems of aircraft, wesnon
systems and transportaticn equipment. In effect, there is a need to
absorb energy without a shock result, In viscc-elastic substances,
the ratio of lateral to lonpitudinal strain in uni-axial stressinc is
not a constant but a variable rarameter desrendine on time and the
cenditions cf the test., A theoretical analysis cf this rarmmeter un-
der various assumptions concerning the visco-elastic response cf the
material and the testing conditions as developed by Freudenthal and
others is given. The laxwell body mcre closelv arrrcximates the
desired reaction., Promise of further approxima.ien is shown in the
characte-istics of scme long chain polymeric fluids which show a hish
bulk mod:.lus under high rressures, [he final sclution to the rroblem
will b accomplished by development of the desirable characteristics
frem a molecular structure aprroach, .

The stress and strain components oj_‘1 and tiﬁ may be written

as e,, and ’ s respectively, so that
i s q:klﬁk and £33 "0yt /30y €y (1L
Ty " 4y 13%«

where §,, is the same aronecker delta., T[he 7enerzl linear viscoe-elase
tic medﬁm 1s defined by the linear operator equaticns

PS;, = %Qey, ad Pq, = X@(Ey -x0)  (12)

where T denotes the temperature difference with respect to a constant
reference terperature and a the coefficient of thermal exrension,
The constants of t.he coerators

L a + 81 Kr * ooooooooooo;oooo.m K;m
ﬂ
Q - b 4 b + ooooooooocoooo..b
1 R' n Tl“
. _ R (1.7)
: ol 8' + 8i KEOQOOO.......QOO oo‘a' Etr o
R | N '

e bé + bi FE + oooo-oooconooocob; ng

sre combinations of relaxation times, retardation times and shear
moduli, :

. Cembining eqs. (1.2) under the assumption ¢f iscthermal condit-
icns, the visco-elastic stress-strain relations may be obtsined in
the alternativeforms:

ow @ oo R 2
| oy = (X fr = % F)I/3E, 64+ L § 813
and . ) . (10&)

(1P 1P o1 P

€y xr-%z) %% " % 1%

Poisson's ratio Q for the elastic medium related to K and G by the
relation ) u (% - 20)/ 2(% + ©) (1.5)
can be transformed and becomes, in linear visco-elastic theoi'y, the
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CPIRATOR
- XPT - 0GTPM

\ AXP ™ + G7P')
Dividing the numerator and denominator by 1f KG, eq. 1.6 takes the
o 1P 1P

(1.6)

iy
) I - I (1.6a)
womele
B I <
wnich can be cttained bv evaluating the secoad eq. (1.!) fer the ccn-

dition, [hus

1P 1P
(LELLE,
"' 7 x . n
and ( )
1.7
gotiELE ) g
R G B

the time deperdent rctic N (t) is cotaired as the ratic v(t) -

= &22/ 611 '\) (on)

Laplace trinsforms are .sed to evaluate this ratio by use cf the
stress-strsin relaicns (1.2) and (1.") and the orerator equations (1.3)

k=m k ken

T (p)=Z ap =p) = Z b, ot
k=1 k=1
and up . (1.8)
k 5 k
B=Z ar Tlp)e= bl
k=1 kel
The ratios _ - b
P(p ' Fr (p)
L (p) -——‘-”p) Cand e (p) m e (19)
.4 L .4 T (p)

are quétients of two rolyncrials, the inverse transfcrms of which
can ustually be exrr ssed in the ferm of series cof nerative exnonerticls,

The transformed eas. (1.7) can be directly written in the form

5 - ( -1 5 1- _)i
Hoxwe e xE@E B

(1.10)

“and

..622'( - -2—-) @
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Polsson's ratioQ (t) is obtainad as the irverse transform

L-l([ 1 - _1 311)

- x®(p) &8 (p) (1.11)
Nt =T 3 1 1 -
LY : 15,

XKE (p) T B (p)

When £ 1" 511 (t) and E’n (p) is given, with ?22 =030,
311 is evaluated with the aic cf the first eq. (1.]0) and irtrcduced
into the second. :ence the ratio

P M S
Q(t) .L-l 9K K (p) 6C B (p) E € () (1.12)
1, _ 1 w )
L9KHE (p) 3G (p)

Eq. (1.11) amd (1.12) will now be evaluated for the !'axwell type of
idealized linear visco-elastic behavicr in veclume=-constant distorticn.
If we assume elastic volumetric defcrmation M' reduces to unity., The
testing corditions investipated are : constant stress % " corst.,

constant stress-rate 0y " ct where ¢ is an ~rbitrary constant,
constant strain 611 = const. and constant strain-rate En = ct,

For the actval evaluation the srbitrary relation 23X = R G has been
introduced, for which the fre-~uently used elsstic valte = 1/3
is obtained.

Ivaluation of "Peisscen's Ratio for Si rle Zlasticallv
~cmpressible Visco-iTastic Tedla=Taxwell Tedy

The mechenical behavior cf a !axwell body is determined

b - -
y P [ ] %. + p ’:‘ = p
i' - l ' -Q.l- 1
where T = M/¢
Ccﬁstant stress o is specifically 6
- 1
cu-cH(t), on-ca

From eq. (1.11)

324




HCWARD

G
+1--3—K
+1+3gx-

. 1
7~

Al |Ajer

Ihe diagram of N (t) for G/K = 3/8 is shown in figure 1, curve
0)y *C- At t = 0, the value of ) =1/3and as t 3@ y = 1/2.

These limits may be explzined by the fact that the instantanecus
response cf & Maxwell body is purely elastic and corsequently Q is
controlled by the ratio G/K only. Under long time loadirg a Max-
well body behaves &8s a visccus fluid which results .» 0-»1/2, with
the elastic compressibility becoming unncticeatle under the uni-
axial testing conditions,

The constant stress rate is specified by
1

o), = et H(t) and B =c 2
Frem eq. (1.11)
-1y 1l+1tp 1, c
L - =) =] t 2¢
) s6tp 9Kk po . 7% *l-3%
¢t t ]
11 [(1+'rp+ 1)_c2_] 2(2-?-91‘-”)

3Gtp 9K p
The corresponding diagram is shewn in figure 1, curve 0y = ct
Constant strain is specified by -

€ =cH(t) and énc%

from eq. (1.12)
1
3K (=+p)=-2Cp
V@) =1 —
2[ 3K z+p)+Gp Ip

1+(3K-20
27X +C

-1) exp (-%_ﬁ.) (1.13)

This is shown by curve Ell = ¢ in figure 1
Constant strain rate is specified by  _
€, = c tH(t) and & =c

° -

From eq. (1,12)

3 gl ax(%-+p)-2cp

' (1.13)
2 3K(%+p) + Gp] p° / i
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- %"gKIt[ l-exp(-g-%;,—c- %] (1.1h)

This is shown by curve g.l =ct in figure 1

n _pdu
sut T F

Then eq. (1.13) becomes

Yospe R B )

and eq. (1.14) becomes

1/n
Jdu
w-l-%ﬁﬁi— - e (= 33 g )
z p1-ew rrrr:(;;;r/n

dy

which gives the ratio cf lateral tc longitudinal strain in uni-axial
stressin; in temms cf viscosity and fluid velocity.

The paper has propcsed a generalizaticn of the Navier-Stokes
equaticn for non-llewtonian fluids in which the siress is prepor-
tionel to a power m cf the rate cf strein. lhe rutio of the trens-
verse to the longit.dinal strain is not a constant but a function
of tine or cf strain and depends strongly upon the visco-elastic
response of the medium as well as on the loading conditions,

RuFZ(2lCES: °
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